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ABSTRACT 

A LISP 1.5 program is described which calculates the Matsen pair-operators and 
the Cl&operators. The Matsen pair-operators project symmetry adapted wave functions 
out of a spin-free primitive function. From the (X-operators the matrix elements 
between these symmetry adapted wave functions may he obtained. 

I. INTRODUCTION 

The basic problem of quantum chemistry is the calculation of many-electron 
wave functions for atoms and molecules given a Hamiltonian H. Neglecting 
nuclear motion, relativistic effects and spin interactions H includes only the kinetic 
energy for the electrons and the electrostatic interactions among the electrons and 
nuclei. This Hamiltonian is invariant under all permutations of the electrons, i.e. 
under the operations of the symmetric group S, (n being the number of electrons), 
and commutes with all spin operators, including S2 and S, , the operators of the 
total spin. The symmetry condition on the wave function resulting from the 
invariance of H under the symmetric group S, is formulated in the Pauli principle. 
The Pauli principle states that for any permutation of the spatial-spin coordinates 
the wave function must behave in an antisymmetric manner. From the fact that 
H commutes with the operators of the total spin follows that the wave function 
must be an eigenfunction of S2 and S, . Hence, one is faced with the problem of 
constructing many-electron wave functions that simultaneously are eigenfunctions 
of S2 and S, and satisfy the antisymmetry principle. 

A general method for obtaining antisymmetric many-electron wave functions 
being eigenfunctions of S2 has been developed by Goddard [l]. Using Young’s 
orthogonal units [2], Goddard constructs an operator Gia such that Gia$ has the 
desired spin and antisymmetry properties, if $I is any function of the spatial-spin 
coordinates of n electrons. Although the wave functions constructed by the 
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GI-method are equivalent to those obtained using the earlier Yamanushi [3]-Kotani 
[4] method1 the GI-method has the advantage of the close relationship to the 
Young tableaux. Clearly, HartreeFock and extended Hartree-Fock wave func- 
tions are special cases of the Yamanushi-Kotani (resp. GI) wave functions [5]. 

Since the spin plays no role in the dynamics of a system described by a spin-free 
Hamiltonian one may eliminate the spin from the wave mechanical description [6]. 
The eigenfunctions of S2 satisfying the antisymmetry principle are replaced by 
spin-free functions with irreducible symmetry under the symmetric group S, . 
For every spin-free observable these spin-free functions are equivalent to the 
antisymmetric space-spin functions [6], [7]. To project a spin-free n-electron wave 
function 4 into the ol-th permutation state Matsen [6] uses the “pair operators”, 
Kim, described in the next section. Corresponding to the several independent 
spin-coupling schemes giving eigenfunctions of S2 there aref” linearly independent 
spin-free functions K+$, i = 1 ***f”, forming a basis for spin-free quantum 
chemistry. In a series of papers, [8]-[12], Matsen and his coworkers have shown 
this spin-free method to be a very clear and operative concept. 

II. PAIR AND CHI-OPERATORS 

The pair operators Kia projecting a spin-free n-electron primitive functions into 
the &h permutation state are elements of the invariant subalgebra A” of the 
algebra on the symmetric group S,, . 01 denotes a partition of n characterizing the 
permutation state. From the antisymmetry principle and the fact that there are 
only two spin states for an electron follows that the only states allowed are those 
with 

01 = [2P, In-q, 0 < p < n/2. (1) 

Matsen’s pair number p is directly related to the total spin S of the n-electron 
system, 

p = n/2 - S (2) 

Eqs. (1) and (2) constitute a one-to-one correspondence between the permutation 
states characterized by ~11 = [2*, in-2p] and the spin states in the conventional 
formulation of quantum chemistry. 

1 There are different spellings of the name Yamanushi in use. The french spelling Yamanouchi 
ist mostly found in literature. However, we chose the official Japanese Hepburn-Romaji trans- 
cription. 
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To obtain the pair operators Ki’ we construct the normal tableau TIol associated 
with the partition a of Eq. (1): 

2p + 1 
L n 

The pair operator ~~~ is the algebra element 

Kla = QcP,= (3) 

Here PIa is the sum of all elements of Pla and QIM is the sum of all elements of 
Q1”; Pl~ denoting the product of the symmetric groups of the rows of the tableau 
Tla and QIa the product of the negative symmetric groups of the columns of TIE. 
(The negative symmetric group is obtained by the substitution v + [(+T in the 
symmetric group.) The pair operators Key, i = 1 .*.f”l, are defined by the formula 
PI 

K.” = [(qi) QlaPIUuli t (4) 

where l(n) is the parity of the permutation 7~, i.e. is + 1 if n is an even permutation 
and -1 if it is odd. (T~$, i = 1 ... f”, are the permutations changing the standard 
tableaux T,“, i = 1 ... f Oi, into the normal tableau Tla.2 The standard tableaux are 
those tableaux for which the integers are arranged in ascending order along the 
rows and down the columns. 

The algebra elements (4) may be used to obtain a set off” linear independent 
functions bia lying in the oath permutation state, 

dim = K&j, i= 1 . ..f”. (5) 

B Matsen uses the canonical tableaux constructed from the canonical pair diagrams [6]. 
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4 is a spin-free n-electron primitive wave function. Now with the functions defined 
in Eq. (5) a matrix of the system Hamiltonian is constructed. An eigenvalue problem 
results. The rth eigenfunction in the cllth permutation state is 

P),” = %g %A (6) 

In solving the eigenvalue problem the matrix elements (@ 1 H 1 &II) have to be 
evaluated. Substitution from Eq. (5) yields 

<@ I H I +,‘? = <‘& 1 H / K/c’+> 

By means of the quantum mechanical “turn over rule” 

(~6 I W,) = @‘+A I F,) 

and the invariance of the Hamiltonian under the symmetric group we get 

(4: 1 H I 4;) = <Kf+K:$ ! H I d>. 

Since 

K;I+ = &%I) d’,“Q,u 

we obtain the following expression for the algebra element K;+K~: 

K;’ Kim = {(%I) ~k,,~~aQ,aQ~‘~~au,i5(u~i). 

Qla is essentially idempotent, viz. 

hence, 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Using the Chi-operators Xiq, defined by Eq. (14) the matrix element <& I H I $bk’) 
may be written in the following form 

(15) 

The Gk(r) are the numerical coefficients of the permutations r in the algebra 
element X,Tk . If the canonical tableaux [6] are chosen instead of the standard 
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tableaux then, except for a normalization factor, the numerical coefficients &(n-1) 
are identical to the familiar Pauling numbers nTk , and the Hermitian adjoints of the 
Chi-operators (X&)+ are identical to the Z& operators of Matsen, Cantu, and 
Poshusta [9]. 

III. TKE PROGRAM 

Because algebra elements are essentially symbol strings whose length varies over 
a wide range in the course of computation and therefore demand for an easy 
mechanism to insert or delete a permutation 7r with its associated numerical factor h 
the problem is beyond the capabilities of a usual numerical computing language 
as FORTRAN or ALGOL. Hence, to program the manipulation of algebra 
elements a list processing language as LISP ([ 131, [ 141) or a similar language [ 151 is 
appropriate. As a first step list representations3 of the algebra elements on the 
symmetric group and of Young tableaux must be defined. For permutations the 
usual cycle representation 

7r = (cycle, cycle, a** cyclei .*a cycle,), s > 0, 
with 

cyclei = (ma mi2 I** mij *** mit), t > 1, 

may be used, mij being natural numbers. Cycles consisting of one number only 
(i.e. an element remaining unchanged under permutation) will be omitted from the 
list representation of 7r. Given the number it of objects (electrons) to be permuted, 
each natural number mij < IZ can appear at most in one of the sublists representing 
cycles in the list describing the permutation V. Clearly the identity permutation E is 
represented by an empty list ( ). 

To represent an algebra element q = C h(n)r the numerical factor h(r) may be 
conveniently included in the list representation of a permutation giving a list 

A77 = (A cycle, a.* cycle, ..* cycle,).4 

Finally an algebra element can be written as a list of its constituent permutations 
including the numerical factors, viz. 

q = (AT, h7T2 *a* A77 k *.- he). 

* A “list” to be manipulated by a list processing language is a string of numerical or character 
objects (usually called “atoms”) enclosed in parentheses, e.g. (A B C). Lists may also contain 
sublists, e.g. ((A B)(C D) E). Besides of lists the “dotted pair” is the second type of structure 
which can be manipulated by the LISP system. A dotted pair is written (A.&. The objects left 
and right from the dot may be atoms, lists or again dotted pairs. 

* In LISP notation the following relations hold: 

X = car[ha], n = cdlqhrl, A* = cons[A; Tr]. 
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Permutations having the numerical factor X = 0 need not actually appear in the list, 
hence the number u of permutations X7rk in the list representation of an algebra 
element is in nearly all cases of practical interest smaller than n!. 

To allow for automatic simplification of algebra elements arising in the progress 
of calculation ordering conventions for numbers in cycles, cycles in permutations 
and permutations in algebra elements are indispensable. These conventions are 
largely arbitrary. We choose the following ones: 

1) Every cycle will be written with its smallest constituent integer being the 
first one. 

2) In a permutation the cycles are ordered with increasing first numbers. 
3) To each permutation a “structure list” 

structure = ((number of cycles) (length of first cycle) 
(length of second cycle) 0.. 
(length of last cycle)) 

is attached. The permutations in an algebra element can then be ordered 
according to increasing first, second, etc., numbers in their respective 
structure lists. 

4) Permutations with equal structure lists are ordered according to increasing 
first, second, etc., numbers in their list representations (n = cdr [XT]) 
irrespective of the parentheses breaking them down in sublists (cycles). 
With these conventions it is not difficult to write LISP routines to 
multiply permutations and algebra elements. 

The second main task is the construction of all standard tableaux to given 
electron number IZ and pair number p. Since the tableaux under study have at most 
two columns they may be represented by “dotted pairs” of lists giving the first 
and second column, respectively, e.g. ((1 3 5). (2 4)) for the “normal tableau” 

Tl = 

1 2 1 -- 
3 4 . 

- 
5 

- 

A more elegant list representation for standard tableaux is the “Yamanushi 
symbol” 

r = (zl z2 -a- zJ. 

Here the integer z, denotes the row of the associated standard tableau containing 
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the integer 1, z2 the row containing the integer 2, and so on. The Yamanushi 
symbol associated to the normal tableau r, given above is 

r-1 = (1 1 2 2 3). 

To describe a standard tableau of at most two columns the numbers in the 
Yamanushi symbol have to comply with the following rules: 

1) For it electrons and p pairs each integer nz < p will be found two times, 
each integer m with p < 111 < n - p once in the Yamanushi symbol. 

2) The first appearance of an integer m in the Yamanushi symbol (read from 
left to right) cannot take place if not all smaller integers are already 
represented at least once, the second appearance not earlier than all 
smaller ones are already contained twice in the symbol. 

On the other hand, all symbols fulfilling these demands are acceptable standard 
tableaux. This fact is used in a LISP routine which constructs a list of all standard 
tableaux to given IZ and p. 

If all standard tableaux are obtained, it is easy to program the calculation of the 
column antisymmetrizer Q, and the row symmetrizer PI for the normal tableau as 
well as the permutations elk which transform a tableau Tk into the corresponding 
normal tableau T, . The Matsen pair-operators K,, and the Chi-operators Xi, are 
then obtained according to Eqs. (4) and (14) using the multiplication routine for 
algebra elements. 

Because the list representation of algebra elements is difficult to read, especially 
in the case of lengthy expressions, an output routine should be provided which 
prints the algebra elements in a more readable format. An example for the final 
output obtained in the rather trivial case of n = 3, p = 1 is given in the appendix. 
The indices of the Chi-operators denote the respective standard tableaux. Permuta- 
tions are written as cycles, the identity permutation is printed as the letter E. 
The numerical factors X are given only if they are different from unity. 

A full listing of the program written in the LISP 1.5-version distributed by 
SHARE for the IBM 7090/94 computer may be obtained from the authors [16]. 

IV. CONCLUSIONS 

The object of this investigation was to study the use of a nonnumerical language 
for the mechanized construction of symmetry adapted wave functions and of the 
pertaining matrix elements of the Hamiltonian. 

The LISP 1.5-program developed calculates for given electron number IZ and pair 
number p the Matsen pair-operators, which project wave functions of the right 
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symmetry out of a primitive, and Chi-operators Xi, from which the matrix elements 
may be obtained. 

As usual for structure oriented computing the capacity of the core memory 
(rather than time restrictions as in most numerical computing) limits the com- 
plexity of the problems which can be processed. Depending on y the present 
program fails between n = 6 (group order n ! = 720) and II = 7 (group order 
II ! = 5040). Since each list representing a permutation needs on an average 
approximately n memory cells, this limit for the performance of the program was 
to be expected. 

However, this relatively high expenditure of memory space to store a single 
permutation in list form cannot be called economical. Hence it seemed advan- 
tageous to build a special list processor to handle algebra elements in a more 
economical way. An experimental version of it will be described in a following 
paper. 
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APPENDIX 

Typical output giving the Matsen-pair-operators Kk and the Chi-operators Xi, 
in the simple case of IZ = 3 electrons having a total spin S = l/2. 

N = 3 ELECTRONS 

P = 1 PAIRS 

2 STANDARD TABLEAUX 

STANDARD TABLEAU 1 = (1 1 21 

HATSEN OPERATOR . . . 

K= 

+ E + (1 21 - (1 31 - II 2 31 

STANDARD TABLEAU 2 = (1 2 1) 

MATSEN OPERATOR . . . 

K = 

l ,I 71 - I2 31 - (1 2 31 + (1 3 21 

CHI OPERATCHS . . . 

CHIIl,ll = 

+ 2*E + 20(1 71 - (1 31 - (2 31 - II 2 31 
- (1 3 21 

CHII1121 = 

+ E + (1 21 + (1 31 - 2112 31 + (1 2 31 
- 2*i1 3 21 

CHIl2,ll = 

+ E + 1, 21 + (1 31 - 2+t2 31 - 2*11 2 31 
+ (1 3 71 

CHII2,21 = 

+ 2+E - (1 21 + z.*t1 31 - (2 31 - (1 2 31 


